Understanding the bottlenecks of thermal transport in metal-organic frameworks

  • Sandro Wieser (Redner/in)
  • Tomas Kamencek (Beitragende/r)
  • Zojer, E. (Beitragende/r)
  • Rochus Schmid (Beitragende/r)
  • Johannes P. Durholt (Beitragende/r)
  • O. N. Bedoya-Martínez (Beitragende/r)

Aktivität: Vortrag oder PräsentationPosterpräsentationScience to science

Beschreibung

Many of the applications for metal-organic frameworks, like gas storage and catalysis, rely on the effectiveness of heat dissipation. Therefore it is crucial to investigate their thermal transport properties. As MOFs allow for easy modifications in their composition and architecture, an in-depth understanding of the structure-to-property relationship will allow a precise tailoring of the material to meet specific requirements. Here we apply classical molecular dynamics (MD) simulations, in combination with the MOF-FF force field potential, to investigate the heat transport properties of MOFs with different composition. For determining the thermal conductivities of the observed systems both equilibrium and non-equilibrium molecular dynamics approaches have been applied. The initial focus is on the isoreticular family of MOFs (IRMOFS) where different combinations of metallic nodes and organic linkers are investigated. Special care is taken to analyze the node-linker interfaces
occurring in MOFs, as they are identified as a major limiting factor for heat transport (see figure 1). Vibrational properties have also been investigated in the framework of density-functional-theory, in order to provide additional insight. We show that using lighter metallic nodes or smaller linkers can
significantly increase thermal conductivity and that the nature of the organic-inorganic interface severely impacts thermal transport.
Zeitraum29 Okt. 2019
Ereignistitel3rd International Conference on Metal Organic Frameworks and Porous Polymers
VeranstaltungstypKonferenz
OrtParis, FrankreichAuf Karte anzeigen

Schlagwörter

  • Thermal Transport
  • Metal-organic framework
  • Molecular Dynamics Simulation

ASJC Scopus Sachgebiete

  • Physik der kondensierten Materie

Fields of Expertise

  • Advanced Materials Science

Treatment code (Nähere Zuordnung)

  • Theoretical