9 in 10 cameras agree: Pedestrians in front possibly endangered

Liliana Marie Prikler*, Franz Wotawa

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Modern cyber-physical systems integrate data from many sensors as a regular part of their operations. Over the years, researchers have proposed methods ranging from statistical approaches to neural networks to achieve this sensor fusion, along with high-level paradigms such as early and late fusion. However, quality assurance of sensor fusion algorithms typically focuses on highlighting their accuracy or ability to reduce uncertainty under given conditions. This paper aims to establish a qualitative approach to testing sensor fusion. We formulate an answer set program based on desirable properties for sensor fusion and show how to apply it to test fusion algorithms. Our results indicate that our approach is effective at finding faults, but does not easily find minimal models for large inputs.

Originalspracheenglisch
TitelProceedings - 2024 IEEE/ACM International Conference on Automation of Software Test, AST 2024
Herausgeber (Verlag)Association of Computing Machinery
Seiten219-223
Seitenumfang5
ISBN (elektronisch)9798400705885
DOIs
PublikationsstatusVeröffentlicht - 15 Apr. 2024
Veranstaltung5th ACM/IEEE International Conference on Automation of Software Test, co-located with the 46th International Conference on Software Engineering: AST 2024 / ICSE 2024 - Lisbon, Portugal
Dauer: 15 Apr. 202416 Apr. 2024

Konferenz

Konferenz5th ACM/IEEE International Conference on Automation of Software Test, co-located with the 46th International Conference on Software Engineering
Land/GebietPortugal
OrtLisbon
Zeitraum15/04/2416/04/24

ASJC Scopus subject areas

  • Artificial intelligence
  • Maschinelles Sehen und Mustererkennung
  • Software
  • Sicherheit, Risiko, Zuverlässigkeit und Qualität
  • Steuerung und Optimierung

Fingerprint

Untersuchen Sie die Forschungsthemen von „9 in 10 cameras agree: Pedestrians in front possibly endangered“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren