Projekte pro Jahr
Abstract
An edge-colouring of a graph is distinguishing if the only automorphism that preserves the colouring is the identity. It has been conjectured that all but finitely many connected, finite, regular graphs admit a distinguishing edge-colouring with two colours. We show that all such graphs except K 2 admit a distinguishing edge-colouring with three colours. This result also extends to infinite, locally finite graphs. Furthermore, we are able to show that there are arbitrary large infinite cardinals κ such that every connected κ-regular graph has a distinguishing edge-colouring with two colours.
Originalsprache | englisch |
---|---|
Aufsatznummer | 103145 |
Seitenumfang | 9 |
Fachzeitschrift | European Journal of Combinatorics |
Jahrgang | 89 |
DOIs | |
Publikationsstatus | Veröffentlicht - Okt. 2020 |
ASJC Scopus subject areas
- Diskrete Mathematik und Kombinatorik
Fields of Expertise
- Information, Communication & Computing
Fingerprint
Untersuchen Sie die Forschungsthemen von „A bound for the distinguishing index of regular graphs“. Zusammen bilden sie einen einzigartigen Fingerprint.Projekte
- 1 Abgeschlossen