A linear time algorithm for linearizing quadratic and higher-order shortest path problems

Eranda   Çela , Bettina Klinz, Lasse Wulf*, Stefan Lendl

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

An instance of the NP-hard Quadratic Shortest Path Problem (QSPP) is called linearizable iff it is equivalent to an instance of the classic Shortest Path Problem (SPP) on the same input digraph. The linearization problem for the QSPP (LinQSPP) decides whether a given QSPP instance is linearizable and determines the corresponding SPP instance in the positive case. We provide a novel linear time algorithm for the LinQSPP on acyclic digraphs which runs considerably faster than the previously best algorithm. The algorithm is based on a new insight revealing that the linearizability of the QSPP for acyclic digraphs can be seen as a local property. Our approach extends to the more general higher-order shortest path problem.
Originalspracheenglisch
Seitenumfang24
FachzeitschriftMathematical Programming
Jahrgang2024
Frühes Online-Datum2024
DOIs
PublikationsstatusElektronische Veröffentlichung vor Drucklegung. - 2024

ASJC Scopus subject areas

  • Software
  • Allgemeine Mathematik

Fields of Expertise

  • Information, Communication & Computing

Fingerprint

Untersuchen Sie die Forschungsthemen von „A linear time algorithm for linearizing quadratic and higher-order shortest path problems“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren