Projekte pro Jahr
Abstract
An instance of the NP-hard Quadratic Shortest Path Problem (QSPP) is called linearizable iff it is equivalent to an instance of the classic Shortest Path Problem (SPP) on the same input digraph. The linearization problem for the QSPP (LinQSPP) decides whether a given QSPP instance is linearizable and determines the corresponding SPP instance in the positive case. We provide a novel linear time algorithm for the LinQSPP on acyclic digraphs which runs considerably faster than the previously best algorithm. The algorithm is based on a new insight revealing that the linearizability of the QSPP for acyclic digraphs can be seen as a local property. Our approach extends to the more general higher-order shortest path problem.
Originalsprache | englisch |
---|---|
Seitenumfang | 24 |
Fachzeitschrift | Mathematical Programming |
Jahrgang | 2024 |
Frühes Online-Datum | 2024 |
DOIs | |
Publikationsstatus | Elektronische Veröffentlichung vor Drucklegung. - 2024 |
ASJC Scopus subject areas
- Software
- Allgemeine Mathematik
Fields of Expertise
- Information, Communication & Computing
Fingerprint
Untersuchen Sie die Forschungsthemen von „A linear time algorithm for linearizing quadratic and higher-order shortest path problems“. Zusammen bilden sie einen einzigartigen Fingerprint.Projekte
- 1 Abgeschlossen
-
DK: Diskrete Mathematik
Ebner, O., Lehner, F., Greinecker, F., Burkard, R., Wallner, J., Elsholtz, C., Woess, W., Raseta, M., Bazarova, A., Krenn, D., Lehner, F., Kang, M., Tichy, R., Sava-Huss, E., Klinz, B., Heuberger, C., Grabner, P., Barroero, F., Cuno, J., Kreso, D., Berkes, I. & Kerber, M.
1/05/10 → 30/06/24
Projekt: Forschungsprojekt