Projekte pro Jahr
Abstract
Active automata learning became a popular tool for the behavioral analysis of communication protocols. The main advantage is that no manual modeling effort is required since a behavioral model is automatically inferred from a black-box system. However, several real-world applications of this technique show that the overhead for the establishment of an active interface might hamper the practical applicability. Our recent work on the active learning of Bluetooth Low Energy (BLE) protocol found that the active interaction creates a bottleneck during learning. Considering the automata learning toolset, passive learning techniques appear as a promising solution since they do not require an active interface to the system under learning. Instead, models are learned based on a given data set. In this paper, we evaluate passive learning for two network protocols: BLE and Message Queuing Telemetry Transport (MQTT). Our results show that passive techniques can correctly learn with less data than required by active learning. However, a general random data generation for passive learning is more expensive compared to the costs of active learning.
Originalsprache | englisch |
---|---|
Titel | Formal Methods for Autonomous Systems and Automated and verifiable Software sYstem DEvelopment |
Seiten | 1-19 |
Seitenumfang | 19 |
Band | 371 |
DOIs | |
Publikationsstatus | Veröffentlicht - 27 Sept. 2022 |
Veranstaltung | 4th International Workshop on Formal Methods for Autonomous Systems, FMAS 2022 and 4th International Workshop on Automated and Verifiable Software sYstem DEvelopment: FMAS / ASYDE 2022 - Berlin, Deutschland Dauer: 26 Sept. 2022 → 27 Sept. 2022 |
Publikationsreihe
Name | Electronic Proceedings in Theoretical Computer Science, EPTCS |
---|---|
Herausgeber (Verlag) | National ICT Australia Ltd |
ISSN (Print) | 2075-2180 |
Workshop
Workshop | 4th International Workshop on Formal Methods for Autonomous Systems, FMAS 2022 and 4th International Workshop on Automated and Verifiable Software sYstem DEvelopment |
---|---|
Land/Gebiet | Deutschland |
Ort | Berlin |
Zeitraum | 26/09/22 → 27/09/22 |
ASJC Scopus subject areas
- Software
Fingerprint
Untersuchen Sie die Forschungsthemen von „Active vs. Passive: A Comparison of Automata Learning Paradigms for Network Protocols“. Zusammen bilden sie einen einzigartigen Fingerprint.Projekte
- 2 Abgeschlossen
-
LearnTwins - Lernende Digitale Zwillinge zur Validierung und Verifizierung von abhängigen Cyber-Physikalischen Systemen
Aichernig, B. (Teilnehmer (Co-Investigator))
1/12/20 → 30/11/23
Projekt: Forschungsprojekt
-
Verlaesslichkeit im Internet der Dinge
Boano, C. A. (Teilnehmer (Co-Investigator)), Kubin, G. (Teilnehmer (Co-Investigator)), Bloem, R. (Teilnehmer (Co-Investigator)), Horn, M. (Teilnehmer (Co-Investigator)), Pernkopf, F. (Teilnehmer (Co-Investigator)), Zakany, N. (Teilnehmer (Co-Investigator)), Mangard, S. (Teilnehmer (Co-Investigator)), Witrisal, K. (Teilnehmer (Co-Investigator)), Römer, K. U. (Teilnehmer (Co-Investigator)), Aichernig, B. (Teilnehmer (Co-Investigator)), Bösch, W. (Teilnehmer (Co-Investigator)), Baunach, M. C. (Teilnehmer (Co-Investigator)), Tappler, M. (Teilnehmer (Co-Investigator)), Malenko, M. (Teilnehmer (Co-Investigator)), Weiser, S. (Teilnehmer (Co-Investigator)), Eichlseder, M. (Teilnehmer (Co-Investigator)), Leitinger, E. (Teilnehmer (Co-Investigator)), Grosinger, J. (Teilnehmer (Co-Investigator)), Großwindhager, B. (Teilnehmer (Co-Investigator)), Ebrahimi, M. (Teilnehmer (Co-Investigator)), Alothman Alterkawi, A. B. (Teilnehmer (Co-Investigator)), Knoll, C. (Teilnehmer (Co-Investigator)), Teschl, R. (Teilnehmer (Co-Investigator)), Saukh, O. (Teilnehmer (Co-Investigator)), Rath, M. (Teilnehmer (Co-Investigator)), Steinberger, M. (Teilnehmer (Co-Investigator)), Steinbauer-Wagner, G. (Teilnehmer (Co-Investigator)) & Tranninger, M. (Teilnehmer (Co-Investigator))
1/01/16 → 31/03/22
Projekt: Forschungsprojekt