ActMAD: Activation Matching to Align Distributions for Test-Time-Training

Muhammad Jehanzeb Mirza, Pol Jané Soneira, Wei Lin, Mateusz Kozinski, Horst Possegger, Horst Bischof

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Test-Time-Training (TTT) is an approach to cope with out-of-distribution (OOD) data by adapting a trained model to distribution shifts occurring at test-time. We propose to perform this adaptation via Activation Matching (ActMAD): We analyze activations of the model and align activation statistics of the OOD test data to those of the training data. In contrast to existing methods, which model the distribution of entire channels in the ultimate layer of the feature extractor, we model the distribution of each feature in multiple layers across the network. This results in a more fine-grained supervision and makes ActMAD attain state of the art performance on CIFAR-100C and Imagenet-C. ActMAD is also architecture-and task-agnostic, which lets us go beyond image classification, and score 15.4% improvement over previous approaches when evaluating a KITTI-trained object detector on KITTI-Fog. Our experiments highlight that ActMAD can be applied to online adaptation in realistic scenarios, requiring little data to attain its full performance.
Originalspracheenglisch
TitelProceedings - 2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2023
Seiten24152-24161
Seitenumfang10
ISBN (elektronisch)9798350301298
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition: CVPR 2023 - Vancouver, Kanada
Dauer: 17 Juni 202324 Juni 2023

Konferenz

Konferenz2023 IEEE/CVF Conference on Computer Vision and Pattern Recognition
KurztitelCVPR 2023
Land/GebietKanada
OrtVancouver
Zeitraum17/06/2324/06/23

ASJC Scopus subject areas

  • Software
  • Maschinelles Sehen und Mustererkennung

Fingerprint

Untersuchen Sie die Forschungsthemen von „ActMAD: Activation Matching to Align Distributions for Test-Time-Training“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren