AGV Path Planning Using Curiosity-Driven Deep Reinforcement Learning

Huilin Yin, Yinjia Lin*, Jun Yan, Qian Meng, Karin Festl, Lukas Schichler, Daniel Watzenig

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

In the field of intelligent manufacturing, automated guided vehicles (AGV s) are required to plan an optimal path to a destination quickly and safely in complex environments. Several research papers have shown that Deep Reinforcement Learning (DRL) can plan a reasonable path for AGVs. However, almost all studies do not consider the influence of sparse external rewards. In addition, most research still uses an unrealistic 2D grid for their path planning environments. To alleviate these problems, we propose a novel AGV path planning method and provide the virtual environments of AGV s that approximate the real physical world. Moreover, the curiosity mechanism helps to enhance the Proximal Policy Optimization (PPO) method to provide additional intrinsic rewards to AGV agents in the sparse reward scenario. As for the environments, we no longer divide them into a 2D grid. Thus, the AGV has a continuous position in our environments. In addition, dynamic obstacles are added to make our environments more realistic. Based on our experiments, we make qualitative and quantitative analyses of the performance of the proposed method and the baseline DRL method. The empirical results show that our proposed method can make AGVs plan a reasonable and safe path with considerable speed during the training process in our virtual environments.

Originalspracheenglisch
Titel2023 IEEE 19th International Conference on Automation Science and Engineering, CASE 2023
Herausgeber (Verlag)IEEE
ISBN (elektronisch)9798350320695
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung19th IEEE International Conference on Automation Science and Engineering: CASE 2023 - Auckland, Neuseeland
Dauer: 26 Aug. 202330 Aug. 2023

Konferenz

Konferenz19th IEEE International Conference on Automation Science and Engineering
KurztitelCASE 2023
Land/GebietNeuseeland
OrtAuckland
Zeitraum26/08/2330/08/23

ASJC Scopus subject areas

  • Steuerungs- und Systemtechnik
  • Elektrotechnik und Elektronik

Fingerprint

Untersuchen Sie die Forschungsthemen von „AGV Path Planning Using Curiosity-Driven Deep Reinforcement Learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren