Alkaline Ethanol Oxidation Reaction on Carbon Supported Ternary PdNiBi Nanocatalyst using Modified Instant Reduction Synthesis Method

Bernd Cermenek*, Bostjan Genorio, Thomas Winter, Sigrid Wolf, Justin G. Connell, Michaela Roschger, Ilse Letofsky-Papst, Norbert Kienzl, Brigitte Bitschnau, Viktor Hacker*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Direct ethanol fuel cells (DEFC) still lack active and efficient electrocatalysts for the alkaline ethanol oxidation reaction (EOR). In this work, a new instant reduction synthesis method was developed to prepare carbon supported ternary PdNiBi nanocatalysts with improved EOR activity. Synthesized catalysts were characterized with a variety of structural and compositional analysis techniques in order to correlate their morphology and surface chemistry with electrochemical performance. The modified instant reduction synthesis results in well-dispersed, spherical Pd 85Ni 10Bi 5 nanoparticles on Vulcan XC72R support (Pd 85Ni 10Bi 5/C (II-III)), with sizes ranging from 3.7 ± 0.8 to 4.7 ± 0.7 nm. On the other hand, the common instant reduction synthesis method leads to significantly agglomerated nanoparticles (Pd 85Ni 10Bi 5/C (I)). EOR activity and stability of these three different carbon supported PdNiBi anode catalysts with a nominal atomic ratio of 85:10:5 were probed via cyclic voltammetry and chronoamperometry using the rotating disk electrode method. Pd 85Ni 10Bi 5/C (II) showed the highest electrocatalytic activity (150 mA⋅cm −2; 2678 mA⋅mg −1) with low onset potential (0.207 V) for EOR in alkaline medium, as compared to a commercial Pd/C and to the other synthesized ternary nanocatalysts Pd 85Ni 10Bi 5/C (I) and Pd 85Ni 10Bi 5/C (III). This new synthesis approach provides a new avenue to developing efficient, carbon supported ternary nanocatalysts for future energy conversion devices. [Figure not available: see fulltext.].

Originalspracheenglisch
Seiten (von - bis)203-214
Seitenumfang12
FachzeitschriftElectrocatalysis
Jahrgang11
Ausgabenummer2
Frühes Online-Datum3 Jan. 2020
DOIs
PublikationsstatusVeröffentlicht - 1 März 2020

ASJC Scopus subject areas

  • Elektrochemie

Fields of Expertise

  • Mobility & Production

Fingerprint

Untersuchen Sie die Forschungsthemen von „Alkaline Ethanol Oxidation Reaction on Carbon Supported Ternary PdNiBi Nanocatalyst using Modified Instant Reduction Synthesis Method“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren