An extensive comparison of preprocessing methods in the context of configuration space learning

Damian Garber*, Alexander Felfernig, Viet-Man Le, Tamim Burgstaller, Merfat El Mansi

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

One of the core goals in the research field of configuration space learning is building precise predictive models that allow for reliably estimating the performance of a configuration without requiring costly tests. The models used for this purpose are usually machine learning-based. However, the models show significant deviations in their performance depending on the investigated Software Product Line (SPL), the applied data preprocessing, and the number of sample configurations collected. Thus, we investigate the impact of different preprocessing methods and their behavior when using different SPLs, machine learning models, and sample sizes. Performance comparisons on this scale are usually not conducted due to their prohibitively expensive execution time requirements, even for smaller SPLs. Thus, we used three fully enumerated spaces as our training data, which allows for more generalized results. Our results show that the average factors between the worst and best-performing preprocessing methods are 2.05 (BerkeleyDBC), 1.17 (7z), and 1.84 (VP9). Further, no single preprocessing method tested was able to outperform all others, nor was this the case within one specific SPL or model type. This underlines the importance of testing new approaches with multiple preprocessing methods.
Originalspracheenglisch
TitelProceedings of the 26th International Workshop on Configuration (ConfWS 2024) co-located with the 30th International Conference on Principles and Practice of Constraint Programming (CP 2024)
Herausgeber (Verlag)CEUR Workshop Proceedings
Seiten81-90
Seitenumfang10
Band3812
PublikationsstatusVeröffentlicht - 30 Okt. 2024
Veranstaltung26th International Workshop on Configuration: ConfWS 2024 - University of Girona, co-located with CP 2024, Girona, Spanien
Dauer: 2 Sept. 20243 Sept. 2024
https://confws.github.io

Publikationsreihe

NameCEUR Workshop Proceedings
Herausgeber (Verlag)RWTH Aachen
ISSN (Print)1613-0073

Workshop

Workshop26th International Workshop on Configuration
KurztitelConfWS 2024
Land/GebietSpanien
OrtGirona
Zeitraum2/09/243/09/24
Internetadresse

ASJC Scopus subject areas

  • Allgemeine Computerwissenschaft

Fingerprint

Untersuchen Sie die Forschungsthemen von „An extensive comparison of preprocessing methods in the context of configuration space learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren