Analysis of width-w non-adjacent forms to imaginary quadratic bases

Clemens Heuberger, Daniel Krenn

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

We consider digital expansions to the base of an algebraic integer τ. For a , the set of admissible digits consists of 0 and one representative of every residue class modulo which is not divisible by τ. The resulting redundancy is avoided by imposing the width-w non-adjacency condition. Such constructs can be efficiently used in elliptic curve cryptography in conjunction with Koblitz curves. The present work deals with analysing the number of occurrences of a fixed non-zero digit. In the general setting, we study all w-NAFs of given length of the expansion (expectation, variance, central limit theorem). In the case of an imaginary quadratic τ and the digit set of minimal norm representatives, the analysis is much more refined. The proof follows Delangeʼs method. We also show that each element of has a w-NAF in that setting.
Originalspracheenglisch
Seiten (von - bis)1752-1808
FachzeitschriftJournal of Number Theory
Jahrgang133
DOIs
PublikationsstatusVeröffentlicht - 2013

Fields of Expertise

  • Information, Communication & Computing

Treatment code (Nähere Zuordnung)

  • Basic - Fundamental (Grundlagenforschung)
  • Application
  • Theoretical

Fingerprint

Untersuchen Sie die Forschungsthemen von „Analysis of width-w non-adjacent forms to imaginary quadratic bases“. Zusammen bilden sie einen einzigartigen Fingerprint.
  • Analytic Combinatorics: Analytic Combinatorics and Probabilistic Number Theory

    Wagner, S. (Teilnehmer (Co-Investigator)), Madritsch, M. (Teilnehmer (Co-Investigator)), Aistleitner, C. (Teilnehmer (Co-Investigator)), Barat, G. (Teilnehmer (Co-Investigator)), Thuswaldner, J. (Projektleiter (Principal Investigator)), Grabner, P. (Projektleiter (Principal Investigator)), Van De Woestijne, C. E. (Teilnehmer (Co-Investigator)), Heuberger, C. (Projektleiter (Principal Investigator)), Brauchart, J. (Teilnehmer (Co-Investigator)), Berkes, I. (Projektleiter (Principal Investigator)), Filipin, A. (Teilnehmer (Co-Investigator)), Zeiner, M. (Teilnehmer (Co-Investigator)) & Tichy, R. (Projektleiter (Principal Investigator))

    1/01/0631/07/12

    Projekt: Forschungsprojekt

Dieses zitieren