Angle-Equivariant Convolutional Neural Networks for Interference Mitigation in Automotive Radar

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

In automotive applications, frequency modulated continuous wave (FMCW) radar is an established technology to determine the distance, velocity and angle of objects in the vicinity of the vehicle. The quality of predictions might be seriously impaired if mutual interference between radar sensors occurs. Previous work processes data from the entire receiver array in parallel to increase interference mitigation quality using neural networks (NNs). However, these architectures do not generalize well across different angles of arrival (AoAs) of interferences and objects. In this paper we introduce fully convolutional neural network (CNN) with rank-three convolutions which is able to transfer learned patterns between different AoAs. Our proposed architecture outperforms previous work while having higher robustness and a lower number of trainable parameters. We evaluate our network on a diverse data set and demonstrate its angle equivariance.
Originalspracheenglisch
Titel2023 20th European Radar Conference (EuRAD)
Seiten135-138
Seitenumfang4
ISBN (elektronisch)9782874870743
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung20th European Radar Conference: EuRAD 2023 - Berlin, Deutschland
Dauer: 20 Sept. 202322 Sept. 2023

Konferenz

Konferenz20th European Radar Conference
KurztitelEuRAD 2023
Land/GebietDeutschland
OrtBerlin
Zeitraum20/09/2322/09/23

ASJC Scopus subject areas

  • Instrumentierung
  • Computernetzwerke und -kommunikation

Fingerprint

Untersuchen Sie die Forschungsthemen von „Angle-Equivariant Convolutional Neural Networks for Interference Mitigation in Automotive Radar“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren