Abstract
We present ATLAS-MVSNet, an end-to-end deep learning architecture relying on local attention layers for depth map inference from multi-view images. Distinct from existing works, we introduce a novel module design for neural networks, which we termed hybrid attention block, that utilizes the latest insights into attention in vision models. We are able to reap the benefits of attention in both, the carefully designed multi-stage feature extraction network and the cost volume regularization network. Our new approach displays significant improvement over its counterpart based purely on convolutions. While many state-of-the-art methods need multiple high-end GPUs in the training phase, we are able to train our network on a single consumer grade GPU. ATLAS-MVSNet exhibits excellent performance, especially in terms of accuracy, on the DTU dataset. Furthermore, ATLAS-MVSNet ranks amongst the top published methods on the online Tanks and Temples benchmark.
Originalsprache | englisch |
---|---|
Titel | 2022 26th International Conference on Pattern Recognition, ICPR 2022 |
Herausgeber (Verlag) | ACM/IEEE |
Seiten | 3557-3563 |
Seitenumfang | 7 |
ISBN (elektronisch) | 9781665490627 |
ISBN (Print) | 978-1-6654-9063-4 |
DOIs | |
Publikationsstatus | Veröffentlicht - 25 Aug. 2022 |
Veranstaltung | 26th International Conference on Pattern Recognition: ICPR 2022 - Montreal, Kanada Dauer: 21 Aug. 2022 → 25 Aug. 2022 |
Konferenz
Konferenz | 26th International Conference on Pattern Recognition |
---|---|
Kurztitel | ICPR 2022 |
Land/Gebiet | Kanada |
Ort | Montreal |
Zeitraum | 21/08/22 → 25/08/22 |
ASJC Scopus subject areas
- Maschinelles Sehen und Mustererkennung