Bisecting three classes of lines

Alexander Pilz, Patrick Schnider*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung


We consider the following problem: Let L be an arrangement of n lines in R3 in general position colored red, green, and blue. Does there exist a vertical plane P such that a line in P simultaneously bisects all three classes of points induced by the intersection of lines in L with P? Recently, Schnider used topological methods to prove that such a cross-section always exists. In this work, we give an alternative proof of this fact, using only methods from discrete geometry. With this combinatorial proof at hand, we devise an O(n2log2⁡(n)) time algorithm to find such a plane and a bisector of the induced cross-section. We do this by providing a general framework, from which we expect that it can be applied to solve similar problems on cross-sections and kinetic points.

FachzeitschriftComputational Geometry: Theory and Applications
PublikationsstatusVeröffentlicht - Okt. 2021

ASJC Scopus subject areas

  • Angewandte Informatik
  • Geometrie und Topologie
  • Steuerung und Optimierung
  • Theoretische Informatik und Mathematik
  • Computational Mathematics


Untersuchen Sie die Forschungsthemen von „Bisecting three classes of lines“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren