Blocking Delaunay Triangulations from Exterior

Oswin Aichholzer, Thomas Hackl, Maarten Löffler, Alexander Pilz, Irene Parada, Manfred Scheucher, Birgit Vogtenhuber

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Given two distinct point sets P and Q in the plane, we say that Q blocks P if no two points of P are adjacent in any Delaunay triangulation of P ∪ Q. Aichholzer et al. (2013) showed that (the Delaunay triangulation of) any set P of n points in general position (that is, no three collinear and no four cocircular) can be blocked by 3
2 n points and that every set P of n points in convex position can be blocked by 5
4 n points. Moreover, they conjectured that, if P is in convex position, n blocking
points are sufficient and necessary. The necessity was recently shown by Biniaz (2021) who proved that every point set in general position requires n blocking points.
Here we investigate the variant, where blocking points can only lie outside of the convex hull of the given point set. We show that 5 4 n − O(1) such exterior-blocking points are sometimes necessary, even if the given point set is in convex position. As a consequence we obtain that, if the conjecture of Aichholzer et al. for the original setting was true, then minimal blocking sets of some point
configurations P would have to contain points inside of the convex hull of P .
Originalspracheenglisch
TitelProc. 38th European Workshop on Computational Geometry (EuroCG 2022)
ErscheinungsortPerugia, Italy
Seiten9:1-9:7
PublikationsstatusVeröffentlicht - 2022
Veranstaltung38th European Workshop on Computational Geometry: EuroCG 2022 - Engineering Department of the University of Perugia, Perugia, Italien
Dauer: 14 März 202216 März 2022
https://eurocg2022.unipg.it/

Konferenz

Konferenz38th European Workshop on Computational Geometry
KurztitelEuroCG 2022
Land/GebietItalien
OrtPerugia
Zeitraum14/03/2216/03/22
Internetadresse

Fields of Expertise

  • Information, Communication & Computing

Fingerprint

Untersuchen Sie die Forschungsthemen von „Blocking Delaunay Triangulations from Exterior“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren