Brownian motion and harmonic functions on Sol(p,q)

Sara Brofferio, Maura Salvatori, Wolfgang Woess*

*Korrespondierende/r Autor/-in für diese Arbeit

    Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

    Abstract

    The Lie group Sol(p,q) is the semidirect product induced by the action of formula on formula which is given by (x,y)↦(epzx,e−qzy), formula⁠. Viewing Sol(p,q) as a three-dimensional manifold, it carries a natural Riemannian metric and Laplace–Beltrami operator. We add a linear drift term in the z-variable to the latter, and study the associated Brownian motion with drift. We derive a central limit theorem and compute the rate of escape. Also, we introduce the natural geometric compactification of Sol(p,q) and explain how Brownian motion converges almost surely to the boundary in the resulting topology. We also study all positive harmonic functions for the Laplacian with drift, and determine explicitly all minimal harmonic functions. All these are carried out with a strong emphasis on understanding and using the geometric features of Sol(p,q), and, in particular, the fact that it can be described as the horocyclic product of two hyperbolic planes with curvatures −p2 and −q2, respectively.
    Originalspracheenglisch
    Seiten (von - bis)5182-5218
    FachzeitschriftInternational Mathematics Research Notices
    Jahrgang2012
    Ausgabenummer22
    DOIs
    PublikationsstatusVeröffentlicht - 2012

    Fields of Expertise

    • Information, Communication & Computing

    Treatment code (Nähere Zuordnung)

    • Basic - Fundamental (Grundlagenforschung)

    Fingerprint

    Untersuchen Sie die Forschungsthemen von „Brownian motion and harmonic functions on Sol(p,q)“. Zusammen bilden sie einen einzigartigen Fingerprint.

    Dieses zitieren