TY - JOUR
T1 - Chemical weathering and progressing alteration as possible controlling factors for creeping landslides
AU - Baldermann, Andre
AU - Dietzel, Martin
AU - Reinprecht, Volker
PY - 2021/7/15
Y1 - 2021/7/15
N2 - Landslides can behave as dynamic processes, which emerge from the complex interplay of tectonics, erosion, weathering and gravitational influences, triggered by various hydrological, mineralogical, biological and geotechnical factors. Integral studies to assess the mechanisms underlying landslide initiation and progression are mainly focussed on specific cases with high geohazard potential. The landslide near Stadtschlaining (Austria) represents a key study site to elucidate the impacts of pelitic sediment composition, weathering regime, alteration patterns and hydrochemistry on recurrent damage progression in the local infrastructure. Based on field work, soil-mechanical logging (Atterberg limits, undrained strength, friction angles), water chemistry (ICP-OES, IC, hydrochemical modeling), solid-phase characterization (XRD, XRF, SEM) and sorption experiments we establish a conceptual model for initiating and progressing of landslides: Infiltration of low mineralized meteoric water (EC: <200 μS/cm) in permeable limonitic gravels triggers chemical weathering of greenschist-derived detritus and promotes its transformation into kaolinite and smectite. The clayey strata (>50 wt% of clay minerals) create zones of mechanical and chemical weakness in the underground (~4–6 m below ground level), which are characterized by particle disintegration/delamination, slip bedding and deformations, and development of porous layers depicting water flow paths. Subsequent Na+ exchange for bivalent ions in the smectite interlayer delivered by percolating, highly mineralized water (EC: 1600–5100 μS/cm) is caused by de-icing salt and fertilizer applications during winter and late summer, and yield in i) decohesion and physical breakdown of the particle aggregates and ii) swelling of the clay matrix in early spring and autumn. These processes reduce the shear strength of the pelitic sediments, resulting in failure and initiation of landslides (deformation: ~500 mm within a month) and subsequent steady creeping motion (deformation: ~100 mm in 6 months). Customized engineered solutions to prevent landslides in this area are presented, which can be conveyed to analogous landslide-affected areas worldwide.
AB - Landslides can behave as dynamic processes, which emerge from the complex interplay of tectonics, erosion, weathering and gravitational influences, triggered by various hydrological, mineralogical, biological and geotechnical factors. Integral studies to assess the mechanisms underlying landslide initiation and progression are mainly focussed on specific cases with high geohazard potential. The landslide near Stadtschlaining (Austria) represents a key study site to elucidate the impacts of pelitic sediment composition, weathering regime, alteration patterns and hydrochemistry on recurrent damage progression in the local infrastructure. Based on field work, soil-mechanical logging (Atterberg limits, undrained strength, friction angles), water chemistry (ICP-OES, IC, hydrochemical modeling), solid-phase characterization (XRD, XRF, SEM) and sorption experiments we establish a conceptual model for initiating and progressing of landslides: Infiltration of low mineralized meteoric water (EC: <200 μS/cm) in permeable limonitic gravels triggers chemical weathering of greenschist-derived detritus and promotes its transformation into kaolinite and smectite. The clayey strata (>50 wt% of clay minerals) create zones of mechanical and chemical weakness in the underground (~4–6 m below ground level), which are characterized by particle disintegration/delamination, slip bedding and deformations, and development of porous layers depicting water flow paths. Subsequent Na+ exchange for bivalent ions in the smectite interlayer delivered by percolating, highly mineralized water (EC: 1600–5100 μS/cm) is caused by de-icing salt and fertilizer applications during winter and late summer, and yield in i) decohesion and physical breakdown of the particle aggregates and ii) swelling of the clay matrix in early spring and autumn. These processes reduce the shear strength of the pelitic sediments, resulting in failure and initiation of landslides (deformation: ~500 mm within a month) and subsequent steady creeping motion (deformation: ~100 mm in 6 months). Customized engineered solutions to prevent landslides in this area are presented, which can be conveyed to analogous landslide-affected areas worldwide.
KW - Chemical weathering
KW - Hydrochemistry
KW - Landslide
KW - Monitoring
KW - Pelitic sediments
KW - Soil chemistry
UR - http://www.scopus.com/inward/record.url?scp=85102320706&partnerID=8YFLogxK
U2 - 10.1016/j.scitotenv.2021.146300
DO - 10.1016/j.scitotenv.2021.146300
M3 - Article
AN - SCOPUS:85102320706
SN - 0048-9697
VL - 778
JO - Science of the Total Environment
JF - Science of the Total Environment
M1 - 146300
ER -