Chimeric Cellobiose Dehydrogenases Reveal the Function of Cytochrome Domain Mobility for the Electron Transfer to Lytic Polysaccharide Monooxygenase

Alfons K.G. Felice, Christian Schuster, Alan Kadek, Frantisek Filandr, Christophe V.F.P. Laurent, Stefan Scheiblbrandner, Lorenz Schwaiger, Franziska Schachinger, Daniel Kracher, Christoph Sygmund, Petr Man, Petr Halada, Chris Oostenbrink, Roland Ludwig*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

The natural function of cellobiose dehydrogenase (CDH) to donate electrons from its catalytic flavodehydrogenase (DH) domain via its cytochrome (CYT) domain to lytic polysaccharide monooxygenase (LPMO) is an example of a highly efficient extracellular electron transfer chain. To investigate the function of the CYT domain movement in the two occurring electron transfer steps, two CDHs from the ascomycete Neurospora crassa (NcCDHIIA and NcCDHIIB) and five chimeric CDH enzymes created by domain swapping were studied in combination with the fungus' own LPMOs (NcLPMO9C and NcLPMO9F). Kinetic and electrochemical methods and hydrogen/deuterium exchange mass spectrometry were used to study the domain movement, interaction, and electron transfer kinetics. Molecular docking provided insights into the protein-protein interface, the orientation of domains, and binding energies. We find that the first, interdomain electron transfer step from the catalytic site in the DH domain to the CYT domain depends on steric and electrostatic interface complementarity and the length of the protein linker between both domains but not on the redox potential difference between the FAD and heme b cofactors. After CYT reduction, a conformational change of CDH from its closed state to an open state allows the second, interprotein electron transfer (IPET) step from CYT to LPMO to occur by direct interaction of the b-type heme and the type-2 copper center. Chimeric CDH enzymes favor the open state and achieve higher IPET rates by exposing the heme b cofactor to LPMO. The IPET, which is influenced by interface complementarity and the heme b redox potential, is very efficient with bimolecular rates between 2.9 × 105 and 1.1 × 106 M-1 s-1.

Originalspracheenglisch
Seiten (von - bis)517-532
Seitenumfang16
FachzeitschriftACS Catalysis
Jahrgang11
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - 15 Jan. 2021
Extern publiziertJa

ASJC Scopus subject areas

  • Katalyse
  • Allgemeine Chemie

Fingerprint

Untersuchen Sie die Forschungsthemen von „Chimeric Cellobiose Dehydrogenases Reveal the Function of Cytochrome Domain Mobility for the Electron Transfer to Lytic Polysaccharide Monooxygenase“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren