ClustNails: Visual Analysis of Subspace Clusters

Andrada Tatu, Leishi Zhang, Tobias Schreck, Enrico Bertini, Daniel Keim, Sebastian Bremm, Tatiana von Landesberger

    Publikation: Beitrag in einer FachzeitschriftArtikel

    Abstract

    Subspace clustering addresses an important problem in clustering multi-dimensional data. In sparse multi-dimensional data, many dimensions are irrelevant and obscure the cluster boundaries. Subspace clustering helps by mining the clusters present in only locally relevant subsets of dimensions. However, understanding the result of subspace clustering by analysts is not trivial. In addition to the grouping information, relevant sets of dimensions and overlaps between groups, both in terms of dimensions and records, need to be analyzed. We introduce a visual subspace cluster analysis system called ClustNails. It integrates several novel visualization techniques with various user interaction facilities to support navigating and interpreting the result of subspace clustering. We demonstrate the effectiveness of the proposed system by applying it to the analysis of real world data and comparing it with existing visual subspace cluster analysis systems.
    Originalspracheenglisch
    Seiten (von - bis)419-428
    FachzeitschriftTsinghua Science and Technology
    Jahrgang17
    Ausgabenummer4
    DOIs
    PublikationsstatusVeröffentlicht - 2012

    Fields of Expertise

    • Sonstiges

    Fingerprint

    Untersuchen Sie die Forschungsthemen von „ClustNails: Visual Analysis of Subspace Clusters“. Zusammen bilden sie einen einzigartigen Fingerprint.

    Dieses zitieren