Collaborative Recommendation of Search Heuristics For Constraint Solvers

Damian Garber*, Tamim Burgstaller, Alexander Felfernig, Viet-Man Le, Sebastian Lubos, Trang Tran, Seda Polat Erdeniz

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: KonferenzbeitragPaperBegutachtung

Abstract

Feature models (FM) support the management of variability properties of software, products, and services. To enable feature model configuration, these models have to be translated into a corresponding formal representation (e.g., a satisfiability or constraint satisfaction representation). Specifically in interactive configuration, efficient response times are crucial. In this paper, we show how to improve the performance of constraint solvers (supporting FM configuration) on the basis of exploiting the concepts of collaborative filtering for recommending solver search heuristics (variable orderings and value orderings). As a basis for our recommendation approach, we used data (configurations) synthesized from real-world feature models using different state-of-the-art synthesis approaches. A performance analysis shows that, with heuristics recommendation, significant improvements of solver runtime performance compared to standard solver heuristics can be achieved.

Originalspracheenglisch
Seiten38-44
Seitenumfang7
PublikationsstatusVeröffentlicht - 16 Okt. 2023
Veranstaltung25th International Workshop on Configuration: ConfWS 2023 - E.T.S. Ingeniería Informática, Universidad de Málaga, Spain, Málaga, Spanien
Dauer: 6 Sept. 20237 Sept. 2023
https://confws.github.io
https://confws.github.io/

Workshop

Workshop25th International Workshop on Configuration
KurztitelConfWS 2023
Land/GebietSpanien
OrtMálaga
Zeitraum6/09/237/09/23
Internetadresse

ASJC Scopus subject areas

  • Allgemeine Computerwissenschaft

Fingerprint

Untersuchen Sie die Forschungsthemen von „Collaborative Recommendation of Search Heuristics For Constraint Solvers“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren