Computational approaches for mining user’s opinions on the Web 2.0

Gerald Petz, Michael Karpowicz, Harald Fürschuss, Andreas Auinger, Vaclav Stritesky, Andreas Holzinger

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

The emerging research area of opinion mining deals with computational methods in order to find, extract and systematically analyze people’s opinions, attitudes and emotions towards certain topics. While providing interesting market research information, the user generated content existing on the Web 2.0 presents numerous challenges regarding systematic analysis, the differences and unique characteristics of the various social media channels being one of them. This article reports on the determination of such particularities, and deduces their impact on text preprocessing and opinion mining algorithms. The effectiveness of different algorithms is evaluated in order to determine their applicability to the various social media channels. Our research shows that text preprocessing algorithms are mandatory for mining opinions on the Web 2.0 and that part of these algorithms are sensitive to errors and mistakes contained in the user generated content.
Originalspracheenglisch
Seiten (von - bis)899-908
FachzeitschriftInformation Processing & Management
Jahrgang50
Ausgabenummer6
DOIs
PublikationsstatusVeröffentlicht - 2014

Fields of Expertise

  • Information, Communication & Computing

Treatment code (Nähere Zuordnung)

  • Basic - Fundamental (Grundlagenforschung)

Fingerprint

Untersuchen Sie die Forschungsthemen von „Computational approaches for mining user’s opinions on the Web 2.0“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren