Computational Evaluation of Model-Agnostic Explainable AI Using Local Feature Importance in Healthcare

Seda Polat Erdeniz*, Michael Schrempf, Diether Kramer, Peter P. Rainer, Alexander Felfernig, Trang Tran, Tamim Burgstaller, Sebastian Lubos

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Explainable artificial intelligence (XAI) is essential for enabling clinical users to get informed decision support from AI and comply with evidence-based medical practice. In the XAI field, effective evaluation methods are still being developed. The straightforward way is to evaluate via user feedback. However, this needs big efforts (applying on high number of users and test cases) and can still include various biases inside. A computational evaluation of explanation methods is also not easy since there is not yet a standard output of XAI models and the unsupervised learning behavior of XAI models. In this paper, we propose a computational evaluation method for XAI models which generate local feature importance as explanations. We use the output of XAI model (local feature importances) as features and the output of the prediction problem (labels) again as labels. We evaluate the method based a real-world tabular electronic health records dataset. At the end, we answer the research question: “How can we computationally evaluate XAI Models for a specific prediction model and dataset?”.

Originalspracheenglisch
TitelArtificial Intelligence in Medicine - 21st International Conference on Artificial Intelligence in Medicine, AIME 2023, Proceedings
Redakteure/-innenJose M. Juarez, Mar Marcos, Gregor Stiglic, Allan Tucker
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten114-119
Seitenumfang6
ISBN (Print)9783031343438
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung21st International Conference on Artificial Intelligence in Medicine: AIME 2023 - Portoroz, Slowenien
Dauer: 12 Juni 202315 Juni 2023

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band13897 LNAI
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz21st International Conference on Artificial Intelligence in Medicine
KurztitelAIME 2023
Land/GebietSlowenien
OrtPortoroz
Zeitraum12/06/2315/06/23

ASJC Scopus subject areas

  • Theoretische Informatik
  • Allgemeine Computerwissenschaft

Fingerprint

Untersuchen Sie die Forschungsthemen von „Computational Evaluation of Model-Agnostic Explainable AI Using Local Feature Importance in Healthcare“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren