Controlling the alignment of 1D nanochannel arrays in oriented metal-organic framework films for host-guest materials design

Kenji Okada*, Miharu Nakanishi, Ken Ikigaki, Yasuaki Tokudome, Paolo Falcaro, Christian J. Doonan, Masahide Takahashi

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung


Controlling the direction of molecular-scale pores enables the accommodation of guest molecular-scale species with alignment in the desired direction, allowing for the development of high-performance mechanical, thermal, electronic, photonic and biomedical organic devices (host-guest approach). Regularly ordered 1D nanochannels of metal-organic frameworks (MOFs) have been demonstrated as superior hosts for aligning functional molecules and polymers. However, controlling the orientation of MOF films with 1D nanochannels at commercially relevant scales remains a significant challenge. Here, we report the fabrication of macroscopically oriented films of Cu-based pillar-layered MOFs having regularly ordered 1D nanochannels. The direction of 1D nanochannels is controllable by optimizing the crystal growth process; 1D nanochannels align either perpendicular or parallel to substrates, offering molecular-scale pore arrays for a macroscopic alignment of functional guest molecules in the desired direction. Due to the fundamental interest and widespread technological importance of controlling the alignment of functional molecules and polymers in a particular direction, orientation-controllable MOF films will open up the possibility of realising the potential of MOFs in advanced technologies.

Seiten (von - bis)8005-8012
FachzeitschriftChemical Science
PublikationsstatusVeröffentlicht - 14 Aug. 2020

ASJC Scopus subject areas

  • Chemie (insg.)

Dieses zitieren