Conversational Recommendations Using Model-Based Reasoning

Oliver A. Tazl, Alexander Perko, Franz Wotawa

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Chatbots as conversational recommender have gained increasing importance over the years. The chatbot market offers a variety of applications for research and industry alike. In this paper, we discuss an implementation that supports the use of our recommendation algorithm during chatbot communication. The program eases communication and improves the underlying recommendation flow. In particular, the implementation makes use of our model-based reasoning approach for improving user experience during a chat, i.e., in cases where user configurations cause inconsistencies. The approach deals with such issues by removing inconsistencies in order to generate a valid recommendation. In addition to the underlying definitions, we demonstrate our implementation along use cases from the tourism domain.

Originalspracheenglisch
TitelProceedings of the 21th International Configuration Workshop
UntertitelConfWS’19 - 21st Configuration Workshop
Seiten13-19
Seitenumfang7
Band2467
PublikationsstatusVeröffentlicht - 1 Jan. 2019
Veranstaltung21st International Configuration Workshop, ConfWS 2019 - Hamburg, Deutschland
Dauer: 19 Sept. 201920 Sept. 2019

Publikationsreihe

NameCEUR Workshop Proceedings
Herausgeber (Verlag)RWTH Aachen
ISSN (Print)1613-0073

Konferenz

Konferenz21st International Configuration Workshop, ConfWS 2019
Land/GebietDeutschland
OrtHamburg
Zeitraum19/09/1920/09/19

ASJC Scopus subject areas

  • Allgemeine Computerwissenschaft

Fields of Expertise

  • Information, Communication & Computing

Fingerprint

Untersuchen Sie die Forschungsthemen von „Conversational Recommendations Using Model-Based Reasoning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren