Cross-linking processes in antimicrobial UV-sol-gel systems initiated by atmospheric pressure plasma

S. Chwatal*, M. Stummer, H. Steiner, A. Brandner, S. Pölzl, C. Kittinger, J. M. Lackner, A. Hinterer, W. Waldhauser, A. M. Coclite

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Sol-gel systems are becoming increasingly popular in the coating industry. However, current coatings are only a few 100 nanometers thick. Due to high stress, e.g., in the aerospace industry, such coatings wear out too quickly and lose their protective effect. Using an atmospheric pressure plasma source, we can cure thicker sol-gel layers both completely and faster and functionalize the coating in a single step. In this contribution, we treat sol-gel layers to make them scratch-resistant, anti-adhesive, and antimicrobial by adding Cu particles. Fourier transform infrared spectroscopy can determine the degree of curing. Additionally, transient thermal finite element calculations were performed to optimize plasma curing parameters and prevent local thermal damage to the sol-gel system and the substrate material. This combination of simulation and experiments allowed a quick determination and solution of the treatment shortcomings.

Originalspracheenglisch
Aufsatznummer139598
FachzeitschriftThin Solid Films
Jahrgang763
DOIs
PublikationsstatusVeröffentlicht - 1 Dez. 2022

ASJC Scopus subject areas

  • Elektronische, optische und magnetische Materialien
  • Oberflächen und Grenzflächen
  • Oberflächen, Beschichtungen und Folien
  • Metalle und Legierungen
  • Werkstoffchemie

Fields of Expertise

  • Advanced Materials Science

Fingerprint

Untersuchen Sie die Forschungsthemen von „Cross-linking processes in antimicrobial UV-sol-gel systems initiated by atmospheric pressure plasma“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren