Data shortage for urban energy simulations? An empirical survey on data availability and enrichment methods using machine learning

Gerald Schweiger, Johannes Exenberger, Avichal Malhotra, Thomas Schranz, Theresa Boiger, C. Van Treeck, James O'Donnell

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Building energy simulations at district and urban scales are vital to design and operate sustainable energy systems. In many cases, these simulations rely on enrichment methods as the required detailed data on building characteristics are often unavailable. Approaches using machine learning to address this problem have already been proposed in the literature. However, research on this topic is still at an early stage and the question of whether machine learning can offer substantial solutions has not yet been answered. The goal of this work is twofold; based on an expert survey, we identify the main challenges regarding data availability for urban energy simulations.
Furthermore, we identify possibilities of machine learning methods in the field of data enrichment and city information models to offer an initial contribution in defining further research perspectives
in this domain.
Originalspracheenglisch
TitelWorkshop on Intelligent Computing in Engineering
Redakteure/-innenJimmy Borrmann, André Borrmann, Lucian-Constantin Ungureanu, Timo Hartmann
Herausgeber (Verlag)Universitätsverlag der TU Berlin
Seiten301-309
Seitenumfang9
ISBN (Print)978-3-7983-3212-6
PublikationsstatusVeröffentlicht - 6 Aug. 2021
Veranstaltung28th International Workshop on Intelligent Computing in Engineering - Berlin, Deutschland
Dauer: 30 Juni 20212 Juli 2021
https://doi.org/10.14279/depositonce-12021

Konferenz

Konferenz28th International Workshop on Intelligent Computing in Engineering
KurztitelEG-ICE 2021
Land/GebietDeutschland
OrtBerlin
Zeitraum30/06/212/07/21
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „Data shortage for urban energy simulations? An empirical survey on data availability and enrichment methods using machine learning“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren