Decision support for multi-component systems: visualizing interdependencies for predictive maintenance

Milot Gashi, Belgin Mutlu, Stefanie Lindstaedt, Stefan Thalmann

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Taking dependencies between components seriously and considering the multi-component perspective instead of the single-system perspective could help to improve the results of predictive maintenance (PdM). However, modeling and identifying the interdependencies in complex industrial systems is challenging. A way to tackle this challenge and to identify interdependencies is using visualization. To the best of our knowledge, existing research on visualizing interdependencies is not applied to multi-component systems (MCS) so far. Further, it is not clear how visualization approaches can provide suitable decision support to identify interdependencies in PdM tasks. We evaluate three key visualization approaches to represent interdependencies in the context of PdM for MCS using a crowd-sourced design study in a questionnaire survey involving 530 participants. Based on our study, we were able to rank these approaches based on performance and usability for our given PdM task. The multi-line approach outperformed other approaches with respect to performance.
Originalspracheenglisch
TitelProceedings of the 55th Hawaii International Conference on System Sciences
Seitenumfang10
DOIs
PublikationsstatusVeröffentlicht - 4 Jan. 2022
Veranstaltung55th Annual Hawaii International Conference on System Sciences: HICSS 2022 - Virtuell, USA / Vereinigte Staaten
Dauer: 3 Jan. 20227 Jan. 2022
https://hicss.hawaii.edu/

Konferenz

Konferenz55th Annual Hawaii International Conference on System Sciences
KurztitelHICSS 2022
Land/GebietUSA / Vereinigte Staaten
OrtVirtuell
Zeitraum3/01/227/01/22
Internetadresse

Fingerprint

Untersuchen Sie die Forschungsthemen von „Decision support for multi-component systems: visualizing interdependencies for predictive maintenance“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren