Deep, deep learning with BART

Moritz Blumenthal, Guanxiong Luo, Martin Schilling, H Christian M Holme, Martin Uecker*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

PURPOSE: To develop a deep-learning-based image reconstruction framework for reproducible research in MRI.

METHODS: The BART toolbox offers a rich set of implementations of calibration and reconstruction algorithms for parallel imaging and compressed sensing. In this work, BART was extended by a nonlinear operator framework that provides automatic differentiation to allow computation of gradients. Existing MRI-specific operators of BART, such as the nonuniform fast Fourier transform, are directly integrated into this framework and are complemented by common building blocks used in neural networks. To evaluate the use of the framework for advanced deep-learning-based reconstruction, two state-of-the-art unrolled reconstruction networks, namely the Variational Network and MoDL, were implemented.

RESULTS: State-of-the-art deep image-reconstruction networks can be constructed and trained using BART's gradient-based optimization algorithms. The BART implementation achieves a similar performance in terms of training time and reconstruction quality compared to the original implementations based on TensorFlow.

CONCLUSION: By integrating nonlinear operators and neural networks into BART, we provide a general framework for deep-learning-based reconstruction in MRI.

Originalspracheenglisch
Seiten (von - bis)678-693
Seitenumfang16
FachzeitschriftMagnetic Resonance in Medicine
Jahrgang89
Ausgabenummer2
DOIs
PublikationsstatusVeröffentlicht - Feb. 2023

ASJC Scopus subject areas

  • Radiologie, Nuklearmedizin und Bildgebung

Fields of Expertise

  • Human- & Biotechnology
  • Information, Communication & Computing

Kooperationen

  • BioTechMed-Graz

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep, deep learning with BART“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren