Deep Learning-Driven State Correction: A Hybrid Architecture for Radar-Based Dynamic Occupancy Grid Mapping

Max Peter Ronecker*, Xavier Diaz, Michael Karner, Daniel Watzenig

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

This paper introduces a novel hybrid architecture that enhances radar-based Dynamic Occupancy Grid Mapping (DOGM) for autonomous vehicles, integrating deep learning for state-classification. Traditional radar-based DOGM often faces challenges in accurately distinguishing between static and dynamic objects. Our approach addresses this limitation by introducing a neural network-based DOGM state correction mechanism, designed as a semantic segmentation task, to refine the accuracy of the occupancy grid. Additionally a heuristic fusion approach is proposed which allows to enhance performance without compromising on safety. We extensively evaluate this hybrid architecture on the NuScenes Dataset, focusing on its ability to improve dynamic object detection as well grid quality. The results show clear improvements in the detection capabilities of dynamic objects, highlighting the effectiveness of the deep learning-enhanced state correction in radar-based DOGM.

Originalspracheenglisch
Titel35th IEEE Intelligent Vehicles Symposium, IV 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers
Seiten2184-2191
Seitenumfang8
ISBN (elektronisch)9798350348811
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung35th IEEE Intelligent Vehicles Symposium: IV 2024 - Jeju Island, Südkorea
Dauer: 2 Juni 20245 Juni 2024

Konferenz

Konferenz35th IEEE Intelligent Vehicles Symposium
KurztitelIV 2024
Land/GebietSüdkorea
OrtJeju Island
Zeitraum2/06/245/06/24

ASJC Scopus subject areas

  • Angewandte Informatik
  • Fahrzeugbau
  • Modellierung und Simulation

Fingerprint

Untersuchen Sie die Forschungsthemen von „Deep Learning-Driven State Correction: A Hybrid Architecture for Radar-Based Dynamic Occupancy Grid Mapping“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren