Projekte pro Jahr
Abstract
Multivariate time series measurements in plasma diagnostics present several challenges when training machine learning models: the availability of only a few labeled data increases the risk of overfitting, and missing data points or outliers due to sensor failures pose additional difficulties. To overcome these issues, we introduce a fast and robust regression model that enables imputation of missing points and data augmentation by massive sampling while exploiting the inherent correlation between input signals. The underlying Student-t process allows for a noise distribution with heavy tails and thus produces robust results in the case of outliers. We consider the state space form of the Student-t process, which reduces the computational complexity and makes the model suitable for high-resolution time series. We evaluate the performance of the proposed method using two test cases, one of which was inspired by measurements of flux loop signals.
Originalsprache | englisch |
---|---|
Aufsatznummer | e202200175 |
Fachzeitschrift | Contributions to Plasma Physics |
Jahrgang | 63 |
Ausgabenummer | 5-6 |
DOIs | |
Publikationsstatus | Veröffentlicht - 1 Juni 2023 |
ASJC Scopus subject areas
- Physik der kondensierten Materie
Fields of Expertise
- Information, Communication & Computing
- Sustainable Systems
Fingerprint
Untersuchen Sie die Forschungsthemen von „Dependent state space Student-t processes for imputation and data augmentation in plasma diagnostics“. Zusammen bilden sie einen einzigartigen Fingerprint.Projekte
- 1 Laufend
-
EUROfusion - Transport und Heizung in Fusionsplasmen
Kernbichler, W., Albert, C., Eder, M., Kasilov, S., Markl, M., Buchholz, R., Graßler, G. S., Kamendje, R. L., Babin, R. & Lainer, P.
1/01/21 → 31/12/27
Projekt: Forschungsprojekt