Diffusion-based generation of Histopathological Whole Slide Images at a Gigapixel scale

Robert Harb*, Thomas Pock, Heimo Muller

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

We present a novel diffusion-based approach to generate synthetic histopathological Whole Slide Images (WSIs) at an unprecedented gigapixel scale. Synthetic WSIs have many potential applications: They can augment training datasets to enhance the performance of many computational pathology applications. They allow the creation of synthesized copies of datasets that can be shared without violating privacy regulations. Or they can facilitate learning representations of WSIs without requiring data annotations. Despite this variety of applications, no existing deep-learning-based method generates WSIs at their typically high resolutions. Mainly due to the high computational complexity. Therefore, we propose a novel coarse-to-fine sampling scheme to tackle image generation of high-resolution WSIs. In this scheme, we increase the resolution of an initial low-resolution image to a high-resolution WSI. Particularly, a diffusion model sequentially adds fine details to images and increases their resolution. In our experiments, we train our method with WSIs from the TCGA-BRCA dataset. Additionally to quantitative evaluations, we also performed a user study with pathologists. The study results suggest that our generated WSIs resemble the structure of real WSIs.

Originalspracheenglisch
TitelProceedings - 2024 IEEE Winter Conference on Applications of Computer Vision, WACV 2024
Herausgeber (Verlag)IEEE
Seiten5119-5128
Seitenumfang10
ISBN (elektronisch)9798350318920
DOIs
PublikationsstatusVeröffentlicht - 3 Jan. 2024
Veranstaltung2024 IEEE/CVF Winter Conference on Applications of Computer Vision: WACV 2024 - Waikoloa, USA / Vereinigte Staaten
Dauer: 4 Jan. 20248 Jan. 2024

Konferenz

Konferenz2024 IEEE/CVF Winter Conference on Applications of Computer Vision
KurztitelWACV 2024
Land/GebietUSA / Vereinigte Staaten
OrtWaikoloa
Zeitraum4/01/248/01/24

ASJC Scopus subject areas

  • Artificial intelligence
  • Angewandte Informatik
  • Maschinelles Sehen und Mustererkennung

Fingerprint

Untersuchen Sie die Forschungsthemen von „Diffusion-based generation of Histopathological Whole Slide Images at a Gigapixel scale“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren