Discrete energy asymptotics on a Riemannian circle

Johann Brauchart*, Douglas P. Hardin, Edward B. Saff

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

We derive the complete asymptotic expansion in terms of powers
of N for the geodesic f -energy of N equally spaced points on a rectifiable simple
closed curve Γ in Rp, p ≥ 2, as N → ∞. For f decreasing and convex, such a
point configuration minimizes the f -energy ∑
j6 =k f (d(xj , xk )), where d is the ge-
odesic distance (with respect to Γ) between points on Γ. Completely monotonic
functions, analytic kernel functions, Laurent series, and weighted kernel func-
tions f are studied. Of particular interest are the geodesic Riesz potential 1/ds
(s 6 = 0) and the geodesic logarithmic potential log(1/d). By analytic continuation
we deduce the expansion for all complex values of s.
Originalspracheenglisch
Seiten (von - bis)77-108
FachzeitschriftUniform Distribution Theory
Jahrgang7
Ausgabenummer2
PublikationsstatusVeröffentlicht - 2012

Fields of Expertise

  • Information, Communication & Computing

Treatment code (Nähere Zuordnung)

  • Basic - Fundamental (Grundlagenforschung)

Fingerprint

Untersuchen Sie die Forschungsthemen von „Discrete energy asymptotics on a Riemannian circle“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren