Distortion-Based Transparency Detection Using Deep Learning on a Novel Synthetic Image Dataset

Volker Knauthe*, Thomas Pöllabauer, Katharina Faller, Maurice Kraus, Tristan Wirth, Max von Buelow, Arjan Kuijper, Dieter W. Fellner

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Transparency detection is a hard problem, as suggested by animals and humans flying or running into glass. However, humans seem to be able to learn and improve on the task with experience, begging the question, whether computers are able to do so too. Making a computer learn and understand transparency would be beneficial for moving agents, such as robots or autonomous vehicles. Our contributions are threefold: First, we conducted a perception study to obtain insights about human transparency detection methods, when borders of transparent objects are not visible. Second, based on our study insights we created a novel synthetic dataset called DISTOPIA, which focuses on the warping properties of transparent objects, placed in a variety of natural scenes and contains over 140 000 high resolution images. Third, we modified and trained a deep neural network classification model with an attention module to detect transparency through warping. Our results show that a neural network trained on synthetic data depicting only distortion effects can solve the transparency detection problem and surpasses human performance.

Originalspracheenglisch
TitelImage Analysis - 23rd Scandinavian Conference, SCIA 2023, Proceedings
Redakteure/-innenRikke Gade, Michael Felsberg, Joni-Kristian Kämäräinen
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten251-267
Seitenumfang17
ISBN (Print)9783031314346
DOIs
PublikationsstatusVeröffentlicht - 2023
Veranstaltung23nd Scandinavian Conference on Image Analysis: SCIA 2023 - Lapland, Finnland
Dauer: 18 Apr. 202321 Apr. 2023

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band13885 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz23nd Scandinavian Conference on Image Analysis
KurztitelSCIA 2023
Land/GebietFinnland
OrtLapland
Zeitraum18/04/2321/04/23

ASJC Scopus subject areas

  • Theoretische Informatik
  • Allgemeine Computerwissenschaft

Fingerprint

Untersuchen Sie die Forschungsthemen von „Distortion-Based Transparency Detection Using Deep Learning on a Novel Synthetic Image Dataset“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren