Dynamic Occupancy Grids for Object Detection: A Radar-Centric Approach

Max Peter Ronecker*, Markus Schratter, Lukas Kuschnig, Daniel Watzenig

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Dynamic Occupancy Grid Mapping is a technique used to generate a local map of the environment, containing both static and dynamic information. Typically, these maps are primarily generated using lidar measurements. However, with improvements in radar sensing, resulting in better accuracy and higher resolution, radar is emerging as a viable alternative to lidar as the primary sensor for mapping. In this paper, we propose a radar-centric dynamic occupancy grid mapping algorithm with adaptations to the state computation, inverse sensor model, and field-of-view computation tailored to the specifics of radar measurements. We extensively evaluate our approach with real data to demonstrate its effectiveness and establish the first benchmark for radar-based dynamic occupancy grid mapping using the publicly available Radarscenes dataset.

Originalspracheenglisch
Titel2024 IEEE International Conference on Robotics and Automation, ICRA 2024
Herausgeber (Verlag)Institute of Electrical and Electronics Engineers
Seiten13991-13997
Seitenumfang7
ISBN (elektronisch)9798350384574
DOIs
PublikationsstatusVeröffentlicht - 2024
Veranstaltung2024 IEEE International Conference on Robotics and Automation: ICRA 2024 - Yokohama, Japan
Dauer: 13 Mai 202417 Mai 2024

Konferenz

Konferenz2024 IEEE International Conference on Robotics and Automation
Land/GebietJapan
OrtYokohama
Zeitraum13/05/2417/05/24

ASJC Scopus subject areas

  • Software
  • Steuerungs- und Systemtechnik
  • Elektrotechnik und Elektronik
  • Artificial intelligence

Fingerprint

Untersuchen Sie die Forschungsthemen von „Dynamic Occupancy Grids for Object Detection: A Radar-Centric Approach“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren