Efficient model-based diagnosis of sequential circuits

Alexander Feldman, Ingo Pill, Franz Wotawa, Ion Matei, Johan de Kleer

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

In Model-Based Diagnosis (MBD), we concern ourselves with the health and safety of physical and software systems. Although we often use different knowledge representations and algorithms, some tools like satisfiability (SAT) solvers and temporal logics, are used in both domains. In this paper we introduce Finite Trace Next Logic (FTNL) models of sequential circuits and propose an enhanced algorithm for computing minimal-cardinality diagnoses. Existing state-of-the-art satisfiability algorithms for minimal diagnosis use Sorting Networks (SNs) for constraining the cardinality of the diagnostic candidates. In our approach we exploit Multi-Operand Adders (MOAs). Based on extensive tests with ISCAS-89 circuits, we found that MOAs enable Conjunctive Normal Form (CNF) encodings that are significantly more compact. These encodings lead to 19.7 to 67.6 times fewer variables and 18.4 to 62 times fewer clauses. For converting an FTNL model to CNF, we could achieve a speed-up ranging from 6.2 to 22.2. Using SNs fosters 3.4 to 5.5 times faster on-line satisfiability checking though. This makes MOAs preferable for applications where RAM and off-line time are more limited than on-line CPU time.

Originalspracheenglisch
TitelAAAI 2020 - 34th AAAI Conference on Artificial Intelligence
Herausgeber (Verlag)AAAI Press
Seiten2814-2821
Seitenumfang8
ISBN (elektronisch)9781577358350
PublikationsstatusVeröffentlicht - 2020
Veranstaltung34th AAAI Conference on Artificial Intelligence, AAAI 2020 - New York, USA / Vereinigte Staaten
Dauer: 7 Feb. 202012 Feb. 2020
Konferenznummer: 34
https://aaai.org/Conferences/AAAI-20/

Publikationsreihe

NameAAAI 2020 - 34th AAAI Conference on Artificial Intelligence

Konferenz

Konferenz34th AAAI Conference on Artificial Intelligence, AAAI 2020
KurztitelAAAI-20
Land/GebietUSA / Vereinigte Staaten
OrtNew York
Zeitraum7/02/2012/02/20
AnderesThirty-Fourth AAAI Conference on Artificial Intelligence
Internetadresse

ASJC Scopus subject areas

  • Artificial intelligence

Fields of Expertise

  • Information, Communication & Computing

Fingerprint

Untersuchen Sie die Forschungsthemen von „Efficient model-based diagnosis of sequential circuits“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren