Efficient Recovery of Multi-Camera Motion from Two Affine Correspondences

Banglei Guan, Ji Zhao, Daniel Barath, Friedrich Fraundorfer

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

We propose an efficient method to estimate the relative pose of a multi-camera system from a minimum of two affine correspondences (ACs). Our solution is novel as it computes the 6DOF relative pose by utilizing a first-order rotation approximation. We directly derive a single polynomial based on the constraint between ACs and the generalized camera model. Then a closed-form solution is found analytically and it produces an accurate relative pose estimation efficiently. Benefiting from the low number of exploited correspondences and the speed of the solver, it speeds up robust estimators, e.g. RANSAC, significantly. The proposed method is evaluated both on synthetic data and real-world image sequences from the KITTI benchmark. It is shown that the proposed solver is superior to the state-of-the-art algorithms in terms of accuracy.
Originalsprachedeutsch
Titel2021 IEEE International Conference on Robotics and Automation (ICRA)
Herausgeber (Verlag)IEEE Publications
Seiten1305-1311
Seitenumfang7
ISBN (Print)978-1-7281-9078-5
DOIs
PublikationsstatusVeröffentlicht - 5 Juni 2021
Veranstaltung2021 IEEE International Conference on Robotics and Automation: IEEE ICRA 2021 - Xi'an, Hybrider Event, China
Dauer: 31 Mai 20214 Juni 2021

Konferenz

Konferenz2021 IEEE International Conference on Robotics and Automation
KurztitelICRA 2021
Land/GebietChina
OrtXi'an, Hybrider Event
Zeitraum31/05/214/06/21

Schlagwörter

  • Closed-form solutions
  • Automation
  • Computational modeling
  • Roads
  • Conferences
  • Pose estimation
  • Benchmark testing

Dieses zitieren