Projekte pro Jahr
Abstract
The Active Appearance Model (AAM) is a widely used approach for model based vision showing excellent results. But one major drawback is that the method is not robust against occlusions. Thus, if parts of the image are occluded the method converges to local minima and the obtained results are unreliable. To overcome this problem we propose a robust AAM fitting strategy. The main idea is to apply a robust PCA model to reconstruct the missing feature information and to use the thus obtained image as input for the standard AAM fitting process. Since existing methods for robust PCA reconstruction are computationally too expensive for real-time processing we applied a more efficient method: Fast-Robust PCA (FR-PCA). In fact, by using our FR-PCA the computational effort is drastically reduced. Moreover, more accurate reconstructions are obtained. In the experiments, we evaluated both, the FR-PCA model on the publicly available ALOI database and the whole robust AAM fitting chain on facial images. The results clearly show the benefits of our approach in terms of accuracy and speed when processing disturbed data (i.e., images containing occlusions).
Originalsprache | englisch |
---|---|
Titel | Computer Vision, Imaging and Computer Graphics. Theory and Applications |
Untertitel | International Joint Conference, VISIGRAPP 2009, Lisboa, Portugal, February 5-8, 2009. Revised Selected Papers |
Redakteure/-innen | Alpesh K. Ranchordas, Joao M. Pereira, Helder J. Araujo, Joao M. R. S. Tavares |
Erscheinungsort | Berlin Heidelberg |
Herausgeber (Verlag) | Springer |
Seiten | 229-241 |
Band | 68 |
ISBN (elektronisch) | 978-3-642-11840-1 |
ISBN (Print) | 978-3-642-11839-5 |
DOIs | |
Publikationsstatus | Veröffentlicht - 2010 |
Publikationsreihe
Name | Communications in Computer and Information Science |
---|
Fields of Expertise
- Information, Communication & Computing
Fingerprint
Untersuchen Sie die Forschungsthemen von „Efficient Robust Active Appearance Model Fitting“. Zusammen bilden sie einen einzigartigen Fingerprint.Projekte
- 1 Abgeschlossen
-
AUTOVISTA - Advanced Unsupervised Monitoring and Visualization of Complex Scenarios
Lancelle, M., Roth, P., Bischof, H. & Fellner, W.
1/04/07 → 30/09/09
Projekt: Forschungsprojekt