Electronic Properties of Tetraazaperopyrene Derivatives on Au(111): Energy-Level Alignment and Interfacial Band Formation

Arnulf Stein, Daniela Rolf, Christian Lotze, Sascha Feldmann, David Gerbert, Benjamin Günther, Andreas Jeindl, Johannes J. Cartus, Oliver T. Hofmann, Lutz H. Gade, Katharina J. Franke, Petra Tegeder

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

N-heteropolycyclic aromatic compounds are promising organic electron-transporting semiconductors for applications in field-effect transistors. Here, we investigated the electronic properties of 1,3,8,10-tetraazaperopyrene derivatives adsorbed on Au(111) using a complementary experimental approach, namely, scanning tunneling spectroscopy and two-photon photoemission combined with state-of-the-art density functional theory. We find signatures of weak physisorption of the molecular layers, such as the absence of charge transfer, a nearly unperturbed surface state, and an intact herringbone reconstruction underneath the molecular layer. Interestingly, molecular states in the energy region of the sp- and d-bands of the Au(111) substrate exhibit hole-like dispersive character. We ascribe this band character to hybridization with the delocalized states of the substrate. We suggest that such bands, which leave the molecular frontier orbitals largely unperturbed, are a promising lead for the design of organic-metal interfaces with a low charge injection barrier.

Originalspracheenglisch
Seiten (von - bis)19969-19979
FachzeitschriftThe Journal of Physical Chemistry C
Jahrgang125
Ausgabenummer36
DOIs
PublikationsstatusVeröffentlicht - 2 Sept. 2021

ASJC Scopus subject areas

  • Elektronische, optische und magnetische Materialien
  • Energie (insg.)
  • Oberflächen, Beschichtungen und Folien
  • Physikalische und Theoretische Chemie

Fields of Expertise

  • Advanced Materials Science

Fingerprint

Untersuchen Sie die Forschungsthemen von „Electronic Properties of Tetraazaperopyrene Derivatives on Au(111): Energy-Level Alignment and Interfacial Band Formation“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren