Exact Soft Analytical Side-Channel Attacks using Tractable Circuits

Thomas Wedenig*, Rishub Nagpal, Gaëtan Cassiers, Stefan Mangard, Robert Peharz

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftKonferenzartikelBegutachtung

Abstract

Detecting weaknesses in cryptographic algorithms is of utmost importance for designing secure information systems. The state-of-the-art soft analytical side-channel attack (SASCA) uses physical leakage information to make probabilistic predictions about intermediate computations and combines these “guesses” with the known algorithmic logic to compute the posterior distribution over the key. This attack is commonly performed via loopy belief propagation, which, however, lacks guarantees in terms of convergence and inference quality. In this paper, we develop a fast and exact inference method for SASCA, denoted as ExSASCA, by leveraging knowledge compilation and tractable probabilistic circuits. When attacking the Advanced Encryption Standard (AES), the most widely used encryption algorithm to date, ExSASCA outperforms SASCA by more than 31% top-1 success rate absolute. By leveraging sparse belief messages, this performance is achieved with little more computational cost than SASCA, and about 3 orders of magnitude less than exact inference via exhaustive enumeration. Even with dense belief messages, ExSASCA still uses 6 times less computations than exhaustive inference.

Originalspracheenglisch
Seiten (von - bis)52472-52483
Seitenumfang12
FachzeitschriftProceedings of Machine Learning Research
Jahrgang235
PublikationsstatusVeröffentlicht - 1 Sept. 2024
Veranstaltung41st International Conference on Machine Learning, ICML 2024 - Vienna, Österreich
Dauer: 21 Juli 202427 Juli 2024

ASJC Scopus subject areas

  • Artificial intelligence
  • Software
  • Steuerungs- und Systemtechnik
  • Statistik und Wahrscheinlichkeit

Fingerprint

Untersuchen Sie die Forschungsthemen von „Exact Soft Analytical Side-Channel Attacks using Tractable Circuits“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren