Extending cycles locally to Hamilton cycles

M. Hamann, Florian Lehner, Julian Pott

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

A Hamilton circle in an infinite graph is a homeomorphic copy of the unit circle S1 that contains all vertices and all ends precisely once. We prove that every connected, locally connected, locally finite, claw-free graph has such a Hamilton circle, extending a result of Oberly and Sumner to infinite graphs. Furthermore, we show that such graphs are Hamilton-connected if and only if they are 3-connected, extending a result of Asratian. Hamilton-connected means that between any two vertices there is a Hamilton arc, a homeomorphic copy of the unit interval [0,1] that contains all vertices and all ends precisely once.
Originalspracheenglisch
AufsatznummerP1.49
Seitenumfang17
FachzeitschriftThe Electronic Journal of Combinatorics
Jahrgang23
Ausgabenummer1
DOIs
PublikationsstatusVeröffentlicht - 2016
Extern publiziertJa

Fingerprint

Untersuchen Sie die Forschungsthemen von „Extending cycles locally to Hamilton cycles“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren