Fast Numerical Techniques for FE Simulations in Electrical Capacitance Tomography

Markus Neumayer*, Thomas Suppan, Thomas Bretterklieber, Hannes Wegleiter, Colin Fox

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract


Purpose

Nonlinear solution approaches for inverse problems require fast simulation techniques for the underlying sensing problem. In this work, the authors investigate finite element (FE) based sensor simulations for the inverse problem of electrical capacitance tomography. Two known computational bottlenecks are the assembly of the FE equation system as well as the computation of the Jacobian. Here, existing computation techniques like adjoint field approaches require additional simulations. This paper aims to present fast numerical techniques for the sensor simulation and computations with the Jacobian matrix.
Design/methodology/approach

For the FE equation system, a solution strategy based on Green’s functions is derived. Its relation to the solution of a standard FE formulation is discussed. A fast stiffness matrix assembly based on an eigenvector decomposition is shown. Based on the properties of the Green’s functions, Jacobian operations are derived, which allow the computation of matrix vector products with the Jacobian for free, i.e. no additional solves are required. This is demonstrated by a Broyden–Fletcher–Goldfarb–Shanno-based image reconstruction algorithm.
Findings

MATLAB-based time measurements of the new methods show a significant acceleration for all calculation steps compared to reference implementations with standard methods. E.g. for the Jacobian operations, improvement factors of well over 100 could be found.
Originality/value

The paper shows new methods for solving known computational tasks for solving inverse problems. A particular advantage is the coherent derivation and elaboration of the results. The approaches can also be applicable to other inverse problems.
Originalspracheenglisch
Seiten (von - bis)1101-1112
Seitenumfang12
FachzeitschriftCOMPEL - The International Journal for Computation and Mathematics in Electrical and Electronic Engineering
Jahrgang42
Ausgabenummer5
Frühes Online-DatumJuli 2023
DOIs
PublikationsstatusVeröffentlicht - 21 Nov. 2023
Veranstaltung20th International IGTE Symposium on Computational Methods in Electromagnetics and Multiphysics: IGTE 2022 - TU Graz, Hybrider Event, Graz, Österreich
Dauer: 18 Sept. 202221 Sept. 2022
http://igtesymp.tugraz.at/symp22/

ASJC Scopus subject areas

  • Angewandte Mathematik
  • Elektrotechnik und Elektronik
  • Angewandte Informatik
  • Theoretische Informatik und Mathematik

Fingerprint

Untersuchen Sie die Forschungsthemen von „Fast Numerical Techniques for FE Simulations in Electrical Capacitance Tomography“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren