Fault detection using online selected data and updated regression models

Titel in Übersetzung: Fehlererkennung durch online selektierte Daten und aktualisierte Regressionsmodelle

Doris Schadler, Ernst Stadlober

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung


Since their increasing complexity and the impossibility of monitoring the data manually, fault detection is of special interest at engine test beds. The work with research data presents yet another challenge. First, it is hard to establish physical models, at least for all variables of interest. Second, prior knowledge of all data settings is not available. Hence, this paper introduces statistical models with no a priori knowledge which are updated online to adapt to new data settings. In order to reduce the amount of time and memory required, incoming data is filtered according to different criteria. Several data selection criteria based on well-known statistical measures such as leverage or Cook's distance have been tested on four different data sets. Our new proposal, a proper combination of the leverage measure and the forecast residual, performs the best. The models are still applicable to forecasting yet even more suitable for error detection.

Titel in ÜbersetzungFehlererkennung durch online selektierte Daten und aktualisierte Regressionsmodelle
Seiten (von - bis)437-449
PublikationsstatusVeröffentlicht - Juli 2019


  • Fehlererkennung
  • Regressionsmodelle
  • Online Modellierung
  • Datenselektion

ASJC Scopus subject areas

  • Statistik und Wahrscheinlichkeit
  • Maschinenbau
  • Instrumentierung
  • Elektrotechnik und Elektronik

Fields of Expertise

  • Information, Communication & Computing

Treatment code (Nähere Zuordnung)

  • Experimental

Dieses zitieren