Fine-Grained Memory Profiling of GPGPU Kernels

Max von Buelow, Stefan Guthe, Dieter W. Fellner

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Memory performance is a crucial bottleneck in many GPGPU applications, making optimizations for hardware and software mandatory. While hardware vendors already use highly efficient caching architectures, software engineers usually have to organize their data accordingly in order to efficiently make use of these, requiring deep knowledge of the actual hardware. In this paper we present a novel technique for fine-grained memory profiling that simulates the whole pipeline of memory flow and finally accumulates profiling values in a way that the user retains information about the potential region in the GPU program by showing these values separately for each allocation. Our memory simulator turns out to outperform state-of-the-art memory models of NVIDIA architectures by a magnitude of 2.4 for the L1 cache and 1.3 for the L2 cache, in terms of accuracy. Additionally, we find our technique of fine grained memory profiling a useful tool for memory optimizations, which we successfully show in case of ray tracing and machine learning applications.

Originalspracheenglisch
Seiten (von - bis)227-235
Seitenumfang9
FachzeitschriftComputer Graphics Forum
Jahrgang41
Ausgabenummer7
DOIs
PublikationsstatusVeröffentlicht - Okt. 2022

ASJC Scopus subject areas

  • Computergrafik und computergestütztes Design

Fingerprint

Untersuchen Sie die Forschungsthemen von „Fine-Grained Memory Profiling of GPGPU Kernels“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren