Flip Graphs of Bounded-Degree Triangulations

Oswin Aichholzer, Thomas Hackl, David Orden, Pedro Ramos, Günter Rote, André Schulz*, Bettina Speckmann

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

We study flip graphs of triangulations whose maximum vertex degree is bounded by a constant k. In particular, we consider triangulations of sets of n points in convex position in the plane and prove that their flip graph is connected if and only if k > 6; the diameter of the flip graph is O(n 2). We also show that, for general point sets, flip graphs of pointed pseudo-triangulations can be disconnected for k ≤ 9, and flip graphs of triangulations can be disconnected for any k. Additionally, we consider a relaxed version of the original problem. We allow the violation of the degree bound k by a small constant. Any two triangulations with maximum degree at most k of a convex point set are connected in the flip graph by a path of length O(n log n), where every intermediate triangulation has maximum degree at most k + 4.
Originalspracheenglisch
Seiten (von - bis)1577-1593
FachzeitschriftGraphs and Combinatorics
Jahrgang29
Ausgabenummer6
DOIs
PublikationsstatusVeröffentlicht - 2013

Fields of Expertise

  • Information, Communication & Computing

Treatment code (Nähere Zuordnung)

  • Theoretical

Fingerprint

Untersuchen Sie die Forschungsthemen von „Flip Graphs of Bounded-Degree Triangulations“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren