Global and local stiffening of ex vivo-perfused stented human thoracic aortas: A mock circulation study

Emmanouil Agrafiotis, Christian Mayer, Martin Grabenwöger, Daniel Zimpfer, Peter Regitnig, Heinrich Mächler, Gerhard A. Holzapfel*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

The effects of thoracic endovascular repair (TEVAR) on the biomechanical properties of aortic tissue have not been adequately studied. Understanding these features is important for the management of endograft-triggered complications of a biomechanical nature. This study aims to examine how stent-graft implantation affects the elastomechanical behavior of the aorta. Non-pathological human thoracic aortas (n=10) were subjected to long-standing perfusion (8h) within a mock circulation loop under physiological conditions. To quantify compliance and its mismatch in the test periods without and with a stent, the aortic pressure and the proximal cyclic circumferential displacement were measured. After perfusion, biaxial tension tests (stress-stretch) were carried out to examine the stiffness profiles between non-stented and stented tissue, followed by a histological assessment. Experimental evidence shows: (i) a significant reduction in aortic distensibility after TEVAR, indicating aortic stiffening and compliance mismatch, (ii) a stiffer behavior of the stented samples compared to the non-stented samples with an earlier entry into the nonlinear part of the stress-stretch curve and (iii) strut-induced histological remodeling of the aortic wall. The biomechanical and histological comparison of the non-stented and stented aortas provides new insights into the interaction between the stent-graft and the aortic wall. The knowledge gained could refine the stent-graft design to minimize the stent-induced impacts on the aortic wall and the resulting complications. Statement of significance: Stent-related cardiovascular complications occur the moment the stent-graft expands on the human aortic wall. Clinicians base their diagnosis on the anatomical morphology of CT scans while neglecting the endograft-triggered biomechanical events that compromise aortic compliance and wall mechanotransduction. Experimental replication of endovascular repair in cadaver aortas within a mock circulation loop may have a catalytic effect on biomechanical and histological findings without an ethical barrier. Demonstrating interactions between the stent and the wall can help clinicians make a broader diagnosis such as ECG-triggered oversizing and stent-graft characteristics based on patient-specific anatomical location and age. In addition, the results can be used to optimize towards more aortophilic stent grafts.

Originalspracheenglisch
Seiten (von - bis)170-183
Seitenumfang14
FachzeitschriftActa Biomaterialia
Jahrgang161
Frühes Online-Datum26 Feb. 2023
DOIs
PublikationsstatusVeröffentlicht - 15 Apr. 2023

ASJC Scopus subject areas

  • Biotechnology
  • Biomaterialien
  • Biochemie
  • Biomedizintechnik
  • Molekularbiologie

Fingerprint

Untersuchen Sie die Forschungsthemen von „Global and local stiffening of ex vivo-perfused stented human thoracic aortas: A mock circulation study“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren