Hamiltonian decompositions of 4-regular Cayley graphs of infinite abelian groups

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

A well-known conjecture of Alspach says that every (Formula presented.) -regular Cayley graph of a finite abelian group can be decomposed into Hamiltonian cycles. We consider an analogous question for infinite abelian groups. In this setting one natural analogue of a Hamiltonian cycle is a spanning double-ray. However, a naive generalisation of Alspach's conjecture fails to hold in this setting due to the existence of (Formula presented.) -regular Cayley graphs with finite cuts (Formula presented.), where (Formula presented.) and (Formula presented.) differ in parity, which necessarily preclude the existence of a decomposition into spanning double-rays. We show that every 4-regular Cayley graph of an infinite abelian group all of whose finite cuts are even can be decomposed into spanning double-rays, and so characterise when such decompositions exist. We also characterise when such graphs can be decomposed either into Hamiltonian circles, a more topological generalisation of a Hamiltonian cycle in infinite graphs, or into a Hamiltonian circle and a spanning double-ray.

Originalspracheenglisch
Seiten (von - bis)559-571
Seitenumfang13
FachzeitschriftJournal of Graph Theory
Jahrgang101
Ausgabenummer3
DOIs
PublikationsstatusVeröffentlicht - Nov. 2022

ASJC Scopus subject areas

  • Diskrete Mathematik und Kombinatorik
  • Geometrie und Topologie

Fingerprint

Untersuchen Sie die Forschungsthemen von „Hamiltonian decompositions of 4-regular Cayley graphs of infinite abelian groups“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren