Improving Applicability of Planning in the RoboCup Logistics League using Macro-actions Refinement

Marco De Bortoli, Lukáš Chrpa, Martin Gebser, Gerald Steinbauer-Wagner

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

This paper focuses on improving the action plans obtained through the use of sequential macro-actions in temporal planning. Macro-actions are a way to address the high complexity of temporal planning in challenging domains. Investigating the Robocup Logistics League (RCLL), a testbed for logistics scenarios in the area of Industry 4.0, we introduce a method to unfold the macro-actions of an obtained abstract plan back into their original atomic actions in an improved plan. This allows to extract potentially better solutions in terms of makespan from the Simple Temporal Network (STN) representing the abstract plan. The proposed method is evaluated on a macro-based modeling of the RCLL domain and is shown to yield improved plans over those obtained using either the original atomic actions or the macro-actions without refinement.
Originalspracheenglisch
TitelRoboCup 2023: Robot World Cup XXVI
Herausgeber (Verlag)Springer, Cham
Seiten287–298
ISBN (elektronisch)978-3-031-55015-7
ISBN (Print)978-3-031-55014-0
DOIs
PublikationsstatusElektronische Veröffentlichung vor Drucklegung. - 14 März 2024
VeranstaltungRoboCup International Symposium 2023: RoboCup 2023 - Bordeaux, Frankreich
Dauer: 4 Juli 202310 Juli 2023

Publikationsreihe

NameLecture Notes in Computer Science
BandLNCS 14140

Konferenz

KonferenzRoboCup International Symposium 2023
Land/GebietFrankreich
OrtBordeaux
Zeitraum4/07/2310/07/23

Fingerprint

Untersuchen Sie die Forschungsthemen von „Improving Applicability of Planning in the RoboCup Logistics League using Macro-actions Refinement“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren