Abstract
Recommender systems offer an important technology aiding users in discovering relevant items among a multitude of available options. The emergence of Large Language Models (LLMs) enables a powerful opportunity to improve the performance and flexibility of recommender systems in different aspects. Those involve possibilities to enhance the item retrieval and ranking, explanation of recommendations, and generation of content to be recommended. The objective of my Ph.D. is to investigate those possibilities to identify and develop methods for improving different aspects of recommender systems using LLMs. The findings are expected to further develop the field of recommender systems and reveal novel opportunities for future research.
Originalsprache | englisch |
---|---|
Titel | UMAP 2024 - Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization |
Erscheinungsort | New York, NY |
Herausgeber (Verlag) | Association of Computing Machinery |
Seiten | 40-44 |
Seitenumfang | 5 |
ISBN (elektronisch) | 9798400704666 |
DOIs | |
Publikationsstatus | Veröffentlicht - 27 Juni 2024 |
Veranstaltung | 32nd ACM Conference on User Modeling, Adaptation and Personalization: UMAP 2024 - Cagliari, Italien Dauer: 1 Juli 2024 → 4 Juli 2024 https://www.um.org/umap2024/ |
Konferenz
Konferenz | 32nd ACM Conference on User Modeling, Adaptation and Personalization |
---|---|
Kurztitel | ACM UMAP 2024 |
Land/Gebiet | Italien |
Ort | Cagliari |
Zeitraum | 1/07/24 → 4/07/24 |
Internetadresse |
ASJC Scopus subject areas
- Software