Improving Recommender Systems with Large Language Models

Sebastian Lubos*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

Recommender systems offer an important technology aiding users in discovering relevant items among a multitude of available options. The emergence of Large Language Models (LLMs) enables a powerful opportunity to improve the performance and flexibility of recommender systems in different aspects. Those involve possibilities to enhance the item retrieval and ranking, explanation of recommendations, and generation of content to be recommended. The objective of my Ph.D. is to investigate those possibilities to identify and develop methods for improving different aspects of recommender systems using LLMs. The findings are expected to further develop the field of recommender systems and reveal novel opportunities for future research.

Originalspracheenglisch
TitelUMAP 2024 - Adjunct Proceedings of the 32nd ACM Conference on User Modeling, Adaptation and Personalization
ErscheinungsortNew York, NY
Herausgeber (Verlag)Association of Computing Machinery
Seiten40-44
Seitenumfang5
ISBN (elektronisch)9798400704666
DOIs
PublikationsstatusVeröffentlicht - 27 Juni 2024
Veranstaltung32nd ACM Conference on User Modeling, Adaptation and Personalization: UMAP 2024 - Cagliari, Italien
Dauer: 1 Juli 20244 Juli 2024
https://www.um.org/umap2024/

Konferenz

Konferenz32nd ACM Conference on User Modeling, Adaptation and Personalization
KurztitelACM UMAP 2024
Land/GebietItalien
OrtCagliari
Zeitraum1/07/244/07/24
Internetadresse

ASJC Scopus subject areas

  • Software

Fingerprint

Untersuchen Sie die Forschungsthemen von „Improving Recommender Systems with Large Language Models“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren