Intelligent Decision-Making in Lane Detection Systems Featuring Dynamic Framework for Autonomous Vehicles

Romana Blazevic*, Fynn Luca Maaß, Omar Veledar, Georg Macher*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

As Advanced Driver-Assistance Systems (ADAS) pave the way for autonomous vehicles, they also improve safety by decreasing the risk of hazardous events. Essential for ADAS, lane detection ensures that vehicles stay on their intended path and navigate safely. Despite their significance, the variability of lane detection algorithms can diminish performance, underscoring the need for robust and reliable solutions. We propose a novel approach to enhance decision-making in autonomous lane detection systems by introducing trust indicator metrics which help determine the usefulness of each algorithm in particular scenarios. Our dynamic framework combines a conventional algorithm with a deep learning model. This complementing combination adapts seamlessly, leveraging each other’s strengths across operational scenarios. We aim to balance the interpretability of conventional methods with the effectiveness of AI, exploring techniques like trust indicators or lane annotations. We validate the proposed framework using a self-built model vehicle demonstrator, providing insights into the real-time performance of our solution and demonstrating the potential for practical deployment.

Originalspracheenglisch
TitelComputer Safety, Reliability, and Security. SAFECOMP 2024 Workshops - DECSoS, SASSUR, TOASTS, and WAISE, Proceedings
Redakteure/-innenAndrea Ceccarelli, Andrea Bondavalli, Mario Trapp, Erwin Schoitsch, Barbara Gallina, Friedemann Bitsch
Herausgeber (Verlag)Springer Science and Business Media Deutschland GmbH
Seiten21-33
Seitenumfang13
ISBN (Print)9783031687372
DOIs
PublikationsstatusVeröffentlicht - 9 Sept. 2024
Veranstaltung19th Workshop on Dependable Smart Embedded and Cyber-Physical Systems and Systems-of-Systems, DECSoS 2024, 11th International Workshop on Next Generation of System Assurance Approaches for Critical Systems, SASSUR 2024, Towards A Safer Systems architecture Through Security, TOASTS 2024 and 7th International Workshop on Artificial Intelligence Safety Engineering, WAISE 2024 held in conjunction with the 43rd International Conference on Computer Safety, Reliability, and Security, SAFECOMP 2024 - Florence, Italien
Dauer: 17 Sept. 202417 Sept. 2024

Publikationsreihe

NameLecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
Band14989 LNCS
ISSN (Print)0302-9743
ISSN (elektronisch)1611-3349

Konferenz

Konferenz19th Workshop on Dependable Smart Embedded and Cyber-Physical Systems and Systems-of-Systems, DECSoS 2024, 11th International Workshop on Next Generation of System Assurance Approaches for Critical Systems, SASSUR 2024, Towards A Safer Systems architecture Through Security, TOASTS 2024 and 7th International Workshop on Artificial Intelligence Safety Engineering, WAISE 2024 held in conjunction with the 43rd International Conference on Computer Safety, Reliability, and Security, SAFECOMP 2024
Land/GebietItalien
OrtFlorence
Zeitraum17/09/2417/09/24

ASJC Scopus subject areas

  • Theoretische Informatik
  • Allgemeine Computerwissenschaft

Fingerprint

Untersuchen Sie die Forschungsthemen von „Intelligent Decision-Making in Lane Detection Systems Featuring Dynamic Framework for Autonomous Vehicles“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren