Into the Fog: Evaluating Robustness of Multiple Object Tracking

Publikation: Beitrag in Buch/Bericht/KonferenzbandBeitrag in einem KonferenzbandBegutachtung

Abstract

State-of-the-art Multiple Object Tracking (MOT) approaches have shown remarkable performance when trained and evaluated on current benchmarks. However, these benchmarks primarily consist of clear weather scenarios, overlooking adverse atmospheric conditions such as fog, haze, smoke and dust. As a result, the robustness of trackers against these challenging conditions remains underexplored. To address this gap, we introduce physics-based volumetric fog simulation method for arbitrary MOT datasets, utilizing frame-by-frame monocular depth estimation and a fog formation optical model. We enhance our simulation by rendering both homogeneous and heterogeneous fog and propose to use the dark channel prior method to estimate atmospheric light, showing promising results even in night and indoor scenes. We present the leading benchmark MOTChallenge (third release) augmented with fog (smoke for indoor scenes) of various intensities and conduct a comprehensive evaluation of MOT methods, revealing their limitations under fog and fog-like challenges.
Originalspracheenglisch
TitelThe 35th British Machine Vision Conference
Herausgeber (Verlag)The British Machine Vision Association
PublikationsstatusVeröffentlicht - 2024
Veranstaltung35th British Machine Vision Conference, BMVC 2024 - Glasgow, Großbritannien / Vereinigtes Königreich
Dauer: 25 Nov. 202428 Nov. 2024

Konferenz

Konferenz35th British Machine Vision Conference, BMVC 2024
Land/GebietGroßbritannien / Vereinigtes Königreich
OrtGlasgow
Zeitraum25/11/2428/11/24

Fingerprint

Untersuchen Sie die Forschungsthemen von „Into the Fog: Evaluating Robustness of Multiple Object Tracking“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren