Kinetic Trapping of Charge-Transfer Molecules at Metal Interfaces

Anna Werkovits, Simon B. Hollweger, Max Niederreiter, Thomas Risse, Johannes J. Cartus, Martin Sterrer*, Sebastian Matera, Oliver T. Hofmann*

*Korrespondierende/r Autor/-in für diese Arbeit

Publikation: Beitrag in einer FachzeitschriftArtikelBegutachtung

Abstract

Despite the common expectation that conjugated organic molecules on metals adsorb in a flat-lying layer, several recent studies have found coverage-dependent transitions to upright-standing phases, which exhibit notably different physical properties. In this work, we argue that from an energetic perspective, thermodynamically stable upright-standing phases may be more common than hitherto thought. However, for kinetic reasons, this phase may often not be observed experimentally. Using first-principles kinetic Monte Carlo simulations, we find that the structure with lower molecular density is (almost) always formed first, reminiscent of Ostwald’s rule of stages. The phase transitions to the upright-standing phase are likely to be kinetically hindered under the conditions typically used in surface science. The simulation results are experimentally confirmed for the adsorption of tetracyanoethylene on Cu(111) using infrared and X-ray photoemission spectroscopy. Investigating both the role of the growth conditions and the energetics of the interface, we find that the time for the phase transition is determined mostly by the deposition rate and, thus, is mostly independent of the nature of the molecule.

Originalspracheenglisch
Seiten (von - bis)3082-3089
Seitenumfang8
FachzeitschriftJournal of Physical Chemistry C
Jahrgang128
Ausgabenummer7
Frühes Online-Datum8 Feb. 2024
DOIs
PublikationsstatusVeröffentlicht - 22 Feb. 2024

ASJC Scopus subject areas

  • Elektronische, optische und magnetische Materialien
  • Allgemeine Energie
  • Physikalische und Theoretische Chemie
  • Oberflächen, Beschichtungen und Folien

Fingerprint

Untersuchen Sie die Forschungsthemen von „Kinetic Trapping of Charge-Transfer Molecules at Metal Interfaces“. Zusammen bilden sie einen einzigartigen Fingerprint.

Dieses zitieren